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Boundary conditions at a naturally permeable wall 
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Experiments giving the mass efflux of a Poiseuille flow over a naturally permeable 
block are reported. The efflux is greatly enhanced over the value it would have if 
the block were impermeable, indicating the presence of a boundary layer in the 
block. The velocity presumably changes across this layer from its (statistically 
average) Darcy value to some slip value immediately outside the permeable 
block. A simple theory based on replacing the effect of the boundary layer with 
a slip velocity proportional to the exterior velocity gradient is proposed and 
shown to be in reasonable agreement with experimental results. 

1. Introduction 
When a Newtonian fluid flows over a porous surface it is necessary, if the 

governing differential system is not to be underdeterminate, to specify some 
condition on the tangential component of the velocity of the free fluid at  the 
porous interface. There exists an extensive analytical literature (e.g. see refer- 
ences quoted in Joseph & Tao (1966)) which describes coupled fluid motions 
satisfying the Navier-Stokes equations in the free fluid, some empirical or semi- 
empirical set of equations (typically Darcy’s Law) in the permeable material, 
and matching conditions at  the common boundaries. It is usual in these analyses 
to approximate the fluid motion near the true boundary by an adherence condi- 
tion for the tangential component of velocity of the free fluid at  some boundary. 
Of course, a certain ambiguity is implied by the notion of a ‘true’ boundary for 
a permeable material, and it is for this reason useful to define a nominal boundary. 
We fix a nominal boundary by first defining a smooth geometric surface and then 
assuming that the outermost perimeters of all the surface pores of the permeable 
material are in this surface. Thus if the surface pores were filled with solid material 
to the level of their respective perimeters a smooth impermeable boundary of the 
assumed shape would result. This definition is precise when the geometry is simple 
(planes, spheres, cylinder, etc.) but may not be fully adequate in more compli- 
cated situations. 

Though the adherence condition is valid at an impermeable surface it is not 
clear that it is valid at the nominal surface of a permeable material. In  the latter 
case, there is a migration of fluid tangent to the boundary within the porous 
matrix, and the requirement that there should be no migration of fluid immedi- 
ately outside the boundary is approximate at  best. It can in fact be argued tha.t 
there is some net tangential drag due to the transfer of forward momentum 
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across the permeable interface. Indeed, if we were dealing with the true velocity 
in the porous material, there could be no slip between the free fluid and the fluid 
immediately within the porous boundary. In  this case, a discontinuity of the 
tangential velocity component could not be allowed. 

The experiment which we report in the following sections was designed to 
examine the nature of this tangential flow in the boundary region of a permeable 
interface. Briefly, we have used a two-dimensional Poiseuille flow above a fluid- 
saturated, permeable block to infer the value of the velocity at  the interface. 
This arrangement is a model for flows in which the Navier-Stokes equations are 
satisfied in the free fluid, the Darcy Law is satisfied in the interior of the perme- 
able material but not necessarily in the boundary regions, and the normal com- 
ponent of the velocity and the pressure are continuous at  the porous boundary. 
The results of this experiment indicate that the effects of viscous shear appear 
to penetrate into the permeable material in a boundary layer region, producing 
a velocity distribution similar to that depicted in figure 1.  The tangential com- 
ponent of velocity of the free fluid at  the porous boundary can be considerably 
greater than the mean filter velocity within the body of the porous material. 
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2. The slip-flow boundary condition 
We consider the rectilinear flow of a viscous fluid through a two-dimensional 

parallel channel formed by an impermeable upper wall (y = h) and a permeable 
lower wall (y = 0). The plane y = 0 defines a nominal surface for the permeable 
material of the type discussed above. A uniform pressure gradient is maintained 
in the longitudinal direction in both the channel and the permeable material. The 
flow through the body of the permeable material, which is homogeneous and 
isotropic, is assumed to be governed by Darcy’s Law. This law is of the nature of 
a statistical result giving the empirical equivalent of the Navier-Stokes equation 
as averaged over a very large number of individual pores. It has been applied and 
tested on a very broad class of fluid flows, and its approximate validity for com- 
mon viscous liquids at  low Reynolds number? can scarcely be challenged 
(Muskat 1937, Scheidegger 1957). In  the absence of body forces Darcy’s Law 

(1) 
may be written as k dP Q = 

p ax ’ 
where k is the permeability of the material and Q is a volume flow rate per unit 
cross-sectional area. As such, Q represents the filter velocity rather than the true 
velocity of the fluid in the pores. 

We now postulate that the slip velocity at  the permeable interface differs from 
the mean filter velocity within the permeable material and that shear effects are 
transmitted into the body of the material through a boundary-layer region 
(figure 1). Across this boundary layer the velocity changes rapidly from its value 
uB at the interface to the Darcy value given by equation (1) .  We further assume 
that the slip velocity for the free fluid is proportional to the shear rate at  the 

t The characteristic length used in defining the Reynolds number within the porous 
medium is of the order of a typical diameter of a channel in the medium and is ordinarily 
quite small. The fluid flow may be turbulent outside the porous medium and laminar within. 
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permeable boundary, and we relate the slip velocity to the exterior flow by the 
ad hoc boundary condition el =P(u,-Q), 

dY y=o+ 

where 0, is a boundary limit point from the exterior fluid. At the same time we 
retain the parallel flow assumption, which leads, through the continuity equation, 
to the independence of u upon x. It follows through (2) that /3 also does not 
depend on x, and so depends only on the properties of the fluid and the permeable 
material. 

Permeable 
material 

FIGURE 1. Velocity profile for the rectilinear flow in a horizontal channel formed by a 
permeable lower wall (y = 0) and an impermeable upper wall (y = h). 

To further specify p we must consider the mechanism by which the slip velocity 
is induced, and we note that the pressure flow is extraneous to the boundary flow. 
It is convenient then, for clarity of exposition, to consider a simpler problem in 
which the pressure gradient is removed and the motion is induced by shear alone 
as in plane Couette flow. The material properties upon which /? can depend are 
the viscosity, p, of the fluid, the permeability, k, of the material and parameters 
which characterize the boundary region of the permeable material. We observe 
from ( 2 )  that p has dimensions of (length)-l, and we note that p is the only known 
independent quantity containing the dimensions of mass and time. This suggests 
that p is independent of the viscosity of the fluid, a result which is strongly 
implied by our experimental observations. Furthermore, a length scale charac- 
terizing the permeable material is dk, so that we can write /3 as aldk, where a is 
a dimensionless quantity depending on the material parameters which charac- 
terize the structure of permeable material within the boundary region. 

We then have for the Poiseuille motion the equation 

(3) 
d2U 1 dP 

- a ? - ; & ’  
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with the boundary conditions 
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u=O at y = h ,  

and du a 
- = -(uB-&) at y = 0. 
dY ,ik 

The solution of (3) gives the velocity profile in the channel as 

where the slip velocity, u,, is given by 

with 

The mass flow rate per unit width through the channel is then 

It follows that the fractional increase in mass flow rate through the channel with 
a permeable lower wall over what it would be if the wall were impermeable is 

3 ( c  + 2 4  
fT(1 f a r ) ’  

@ =  (4) 

The quantity @ takes the value 3 when f~ = 42,  independent of a. This occurs 
when the velocity at the permeable wall of the channel is equal to the Darcy value 
within the permeable material, and the velocity profile in the channel has a zero 
gradient at  the permeable wall. In  most applications, h will be considerably 
greater than J ( 2 k ) .  It is probable, therefore, that for values of c near J2 the 
average size of the individual pores within the material is at  least equal to the 
height of the channel, and the assumption of rectilinear flow in the channel 
breaks down. 

3. Experiments 
The equipment is designed to provide accurate simultaneous measurements 

of the flow rate through a long porous block and the flow rate through a small 
uniform gap immediately above this block. The porous block is inserted into an 
open rectangular channel which connects an upstream reservoir with two down- 
stream reservoirs (figure 2 ) .  The downstream end of the block is positioned against 
an adjustable divider plate which is set to the same height as the top of the block 
and is designed to separate the efflux from the gap from that through the porous 
block. The porous blocks have non-porous vertical aluminium sides which are used 
to support small spacers. The top of the channel rests on these spacers and is held 
down fimly by means of adjusting screws. In  this manner, a gap of any desired 
size can be created by using the appropriate spacers. The channel top is made of 
plate glass and has pressure orifices a t  intervals of 1 in. along the centre line. 
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A constant head is maintained in the upstream reservoir by means of an adjust- 
able overflow weir. Fluid flows into the stratified test section through a smooth 
converging entrance, and on leaving the channel flows into one of the two down- 
stream reservoirs. The fluid leaves these reservoirs over weirs which can be 
adjusted independently, so that the pressure at  the exit plane of the porous block 
is the same in both the porous material and in the gap above the material. 
Solenoid valves direct the fluid either to measuring vessels or to a large collecting 
tank, from where it is returned through a filter to the upstream reservoir. 

Filter 

---- 

tanks 

FIGURE 2. Experimental arrangement. 
Pump Main reservoir 

Various samples of two types of permeable material have been used. These are 
low-density nickel foametal manufactured by the General Electric Company, 
and aloxite manufactured by the Carborundum Company. These materials were 
chosen on account of their basic difference in structure. Foametal has a cellular 
structure consisting of irregularly-shaped interconnected pores formed by a 
lattice construction, whereas aloxite is made from fused crystalline aluminium 
oxide grains held together with a ceramic bond. 

All specimens were 8 in. long, with an effective flow area of 3.5 by 1.5 in. 

4. Results 
Initial experiments were performed using demineralized water and gaps 

formed by impermeable upper and lower walls. The measured mass flow rates are 
compared with the predicted Poiseuille flow rates in figure 3, where the data are 
plotted as M,l,ub against - (ph3/1 2p2) dPldx. These quantities correspond, respec- 
tively, to measured and predicted Reynolds numbers based on the mean velocity 
in the gap and the height of the gap. The agreement between the measured values 
and the predicted values is good over the whole range of measured Reynolds 
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numbers, with over 90 yo of the experimental values having errors of less than 
2%. The repeatability of the data coupled with the linearity of the pressure 
gradients recorded during the individual tests demonstrates that our method of 
setting up the experiment produces uniform gaps very close to a nominal size 
defined by the thickness of the spacers. 
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- ( ph3/12p2) dP/dx  

FIGURE 3. Calibration of the gap for Poiseuille flow using demineralized water. MJpb is 
the Reynolds number computed from the measured mass flow rate, and - (ph3/12p2)dP/dx 
is the Reynolds number computed from the measured pressure gradient. 

Figure 4 shows the measured fractional increase in mass flow rate through 
the gap plotted against the parameter hlJk for the flow of demineralized water 
over a foametal block. Also plotted on this figure are two members of the family 
of curves given by (4), with assumed values for a of 0.8 and 1.2. These experi- 
mental data for water show considerably more scatter than the data obtained 
from the experiments using oil, described below and in figures 6 and 7, and we are 
thus not able to fix a value for a. The data, however, appear to be consistent with 
the assumed form for the boundary condition a t  the permeable wall. The scatter 
occurs mainly as a result of errors involved in adjusting and measuring the 
pressure gradients along the gap and the block. The equipment is designed 
primarily for use with thin oils, so that water, having a much smaller dynamic 
viscosity requires a correspondingly smaller pressure gradient to produce a given 
mass flow rate. With a small pressure gradient, the flows through the gap and the 
block are very sensitive t o  inaccurate adjustments of the downstream pressure 
heads. 

An investigation of the effects of surface roughness on Poiseuille flow was 
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performed in order to eliminate this as the major mechanism producing the 
observed increase in the mass efflux through the gap. For this experiment the 
lower wall of the gap consisted of an impermeable rough surface formed from 
a slab of resinoid-bonded aluminium oxide, having an average pore size which 
corresponded closely to that of the permeable material used for the experiments 
described above. The surface was not rough in the sense that asperities projected 
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FIGURE 4. CD as a function of h/Jk for foametal porous specimensusing demineralizedwater. 
k = 1.1 x 10-5 in.2. Curve P, a = 0.8; curve Q ,  a = 1.2. 

into the flow, but was flat with a large number of surface pores which penetrated 
into the material, producing a surface similar in texture to that of the foametal 
block. The results of this experiment are shown in figure 5,  where the resistance 
factor, A, is plotted against Reynolds number based on the height of the gap and 
the average velocity in the gap. Also shown in this figure is the theoretical result 
for rectilinear flow, A = 24/Re. The experimental points agree closely with the 
theoretical result except at  the very low Reynolds numbers and in the region 
where transition from laminar to turbulent flow begins to occur. The data at  the 
low Reynolds numbers were obtained using gap sizes very close to the average 
pore size of the rough surface, so that the assumption of rectilinear flow within 
the gap was probably not valid for these tests. We conclude from this figure that, 
for gap sizes greater than an average pore diameter, the surface roughness caused 
by the pores has a negligible effect on the flow rate, provided the flow is in the 
laminar regime. It follows that the substantial increase in the mass flow rate 
through the gap produced by the presence of the permeable wall is a consequence 
of the shearing action in the boundary layer within the wall. 

Three different samples of foametal and two samples of aloxite were used in 
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FIGURE 5 .  Resistance coefficient as a function of Reynolds number for a rough wall using 
demineralized water. v, h = 0.0104 in.; @, h = 0.0156 in.; @, h = 0.0236 in.; 0 ,  
h = 0.0313 in.; 0 ,  h = 0.0340 in.; 0, h = 0.0405 in.; A, h = 0.0469 in.; 0, h = 0.0641 in. 
__ , h = 24/Re. 
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FIGURE 6. 0 as a function of h/ J k  for foametal porous specimens using Sinclair 100-Grade 
Duro oil. 0, k = 1.5 x in.2. A, k = 6.1 x in.2; 0, k = 12.7 x in.2. Curve A ,  
a = 0-78; curve B, a = 1,45; curve C, a = 4.0. 
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experiments with Sinclair 100-Grade Duro oil. The fractional increase in mass 
flow rate through the gap for each of the foametal blocks is compared in figure 6 
with a member of the family of curves given by (4), where the values of a have 
been chosen such that the curves appear to give the best fits to the experimental 
points. Comparison of figures 4 and 6 (curve A )  suggests that for a given perme- 
able material, the fractionalincrease in the mass flow through the gap isessentially 

0 10 20 30 40 50 60 70 80 90 100 110 

hlJk 

FIGURE 7. 0 as a function of h/Jk for aloxite porous specimens using Sinclair 100-Grade 
Duro oil. 0, k = 1.0 x in.2; A, k = 2.48 x lop6 im2. 

the same for oil and water. The ratio of the dynamic viscosity of the 100-Grade 
oil to that of water is roughly 30, and it would seem, on this account, very 
unlikely that the fractional increase in mass flow could depend strongly on the 
viscosity. 

The results for the aloxite blocks are shown in figure 7,  which includes, for 
comparison, the curves presented in figure 6. It is not possible to find values of a 
for these two blocks which will allow members of equation (4) to be chosen such 
that they pass through all the experimental points. A value of a of 0.1 appears to 
give the best fit for both specimens. The most striking feature about figure 7 is 
that the granular material (aloxite) appears to have a much greater effect on the 
exterior flow than the ‘lattice-type ’ material (foametal). A possible reason for 
this is to be found in the structures of the two materials. The foametal has a 
uniform pore distribution throughout the whole of the material, whereas the 
aloxite is a compacted granular material, and so probably has a greater porosity 
very close to the edges of the material than in the main body of the material. 
This would result in a higher value of the permeability in the boundary layer 
region than the value measured for the block. Consequently, the effect of this 
type of material on the rectilinear flow in the gap would be that of a material 
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with a somewhat higher permeability than the measured value. The slip coeffi- 
cient is thus dependent on the structure of the material at the interface, and 
materials having roughly the same permeability or even bulk porosity may have 
quite different slip coefficients. 

Since a depends on the structural constants of the material, an attempt was 
made to correlate a with the ‘average pore diameter’ of the material. Pore 
‘ diameters ’ were measured over a large part of the upper surface of each foametal 
block and averaged. It turned out that for each sample the range of pore sizes 
about the mean was not great, so that the concept of an ‘average pore diameter’ 
for this type of material is probably not too unrealistic. The identification of 

Average 
pore size 

Block k(in.2) a (in.) 
Foametal A 1.5 x 10-5 0.78 0.016 
Foametal B 6.1 x 1-45 0.034 
Foametal C 12.7 x lovs 4.0 0-045 
Aloxite 1.0 x 10-6 0- 1 0.013 
Aloxite 2.48 x 0.1 0.027 

TABLE I 

individual pores at the surface of the aloxite, however, was not possible because 
of the construction of the material. An estimate of the effective pore size for each 
block has been obtained from the manufacturers specifications of the theoretical 
effective pore size, this being the size of the largest spherical particle that can 
just pass through the material. These results are summarized in table 1, which 
shows that a for the foametal material depends directly on the ‘average pore 
diameter’ a t  the interface. 

Finally, our experiments have shown consistently that the increase in mass 
flow rate through the gap is accompanied by an increase in mass flow rate 
through the permeable block. This increase, expressed as a fraction of the flow 
rate predicted by Darcy’s Law, is a relatively much smaller effect than the 
corresponding effect in the free fluid, and results have not yet sufficient precision 
to justify quantitative conclusions. Our experiments, however, indicate that this 
fractional increment in mass flow increases with gap size. These results are 
consistent with the hypothesis that a boundary layer in the permeable block 
may strongly influence the rectilinear flow in the gap above the block. 

5. Conclusions 
The data presented here appear to indicate that the rectilinear flow of a viscous 

fluid over the surface of a permeable material induces a boundary layer region 
within the material. The effects of this boundary layer can be such as to greatly 
alter the nature of the tangential motion near the nominal boundary. A slip-flow 
boundary condition with one experimentally-determined parameter is not in- 
consistent with the experimental data. This parameter would appear to be 
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largely independent of viscosity, but it does seem to depend on material para- 
meters, other than the permeability, and in particular on structural parameters 
characterizing the nature of the porous surface. 
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